笼目六角反铁磁Mn3Ga单晶室温大反?;舳в?/span>
日期:
2024-04-22
浏览次数:
21
笼目(kagome)结构磁性材料具有独特的准二维晶体结构、可调控的拓扑能带结构和磁结构,从而表现出大的反常输运行为、磁斯格明子、手性反常等诸多新奇的物理特性。其中,笼目六角反铁磁Mn3X(Ga、Ge、Sn)合金具有拓扑能带结构,可以表现出大的磁电响应效应。同时,兼具反铁磁无杂散场、本征频率高等特性,是新型反铁磁自旋电子学器件理想的候选材料。近年来,Mn3Sn和Mn3Ge在实验上已经相继被证实其具有大的反?;舳в?em class="wx_search_keyword" style="margin: 0px; padding: 0px; outline: 0px; max-width: 100%; display: inline-block; vertical-align: super; font-size: 10px; width: 1.2em; height: 1.2em; -webkit-mask-position: 50% 50%; -webkit-mask-repeat: no-repeat; -webkit-mask-size: 100%; -webkit-mask-image: url(" 3csvg="" width="12" height="12" viewbox="0 0 12 12" fill="%23576B95" xmlns="http://www.w3.org/2000/svg" 3cpath="" fill-rule="evenodd" clip-rule="evenodd" d="M7.60772 8.29444C7.02144 8.73734 6.29139 9 5.5 9C3.567 9 2 7.433 2 5.5C2 3.567 3.567 2 5.5 2C7.433 2 9 3.567 9 5.5C9 6.28241 8.74327 7.00486 8.30946 7.5877C8.3183 7.59444 8.3268 7.60186 8.33488 7.60994L10.4331 9.70816L9.726 10.4153L7.62777 8.31704C7.62055 8.30983 7.61387 8.30228 7.60772 8.29444ZM8 5.5C8 6.88071 6.88071 8 5.5 8C4.11929 8 3 6.88071 3 5.5C3 4.11929 4.11929 3 5.5 3C6.88071 3 8 4.11929 8 5.5Z" box-sizing:="" border-box="" overflow-wrap:="" break-word="">,反常能斯特效应等,而笼目六角Mn3Ga单晶始终未被报道。中国科学院物理研究所/北京凝聚态物理国家研究中心怀柔研究部HM03课题组长期从事新型磁性功能材料的开发及物性研究,近年来对六角结构磁性材料体系有着深入的研究。例如,开发了具有自主知识产权的宽温区跨室温斯格明子新材料体系【Adv. Mater. 28, 6887(2016);Adv. Mater. 29, 1701144 (2017);Nano Lett. 18, 1274 (2018);Nano Lett. 20, 868 (2020)】,并在物性调控和器件物理研究方面取得了一系列进展【Nature 561, 91 (2018);Adv. Mater. 32, 1904815 (2019); ASC Nano 13, 922 (2019);Nat. Commun. 13, 5991 (2022)】。最近,课题组博士后宋林轩、博士生周凤和刘永昌特聘研究员等,在笼目六角反铁磁Mn3Ga单晶的制备及物性研究方面取得了重要进展。Mn3Ga为六角晶体结构,空间群为P63/mmc,由 Mn原子构成的笼目晶格以及晶格中心位置的Ga原子沿z轴堆砌而成,笼目晶格内三个近邻Mn原子的磁矩互呈120°形成非共线反铁磁结构。相较于Mn3Sn和Mn3Ge,Ga原子的价电子较少,正分Mn3Ga的费米能级距外尔点相对较远,理论预测其反?;舳绲悸式闲。≒hys. Rev. B 95, 075128 (2017).)。而经过课题组长期对Mn3Ga合金结构的研究,发现Mn3Ga多晶在富Ga的情况下可以稳定存在,并表现出交换偏置效应、拓扑霍尔效应等物理现象【J. Appl. Phys. 131, 173903 (2022);J. Magn. Magn. Mater. 536, 168109 (2021);Appl. Phys. Lett. 119, 152405 (2021).】。进一步,通过理论预测发现,Mn2.43Ga中Ga原子过量可以使费米能级上移,增大贝利曲率进而诱发大的反常霍尔效应?;谏鲜龇⑾?,通过助溶剂法,他们首次制备出了偏分的Mn3Ga单晶Mn2.4Ga(图1),并发现了Mn2.4Ga具有明显的各向异性大反常霍尔效应(见图2)。当磁场施加于笼目晶格面内时反?;舳绲甲畲?,室温反?;舳绲悸首畲罂纱?50 Ω-1cm-1,优于Mn3Sn和Mn3Ge(~20 Ω-1cm-1、50 Ω-1cm-1)。低温下最大可达527 Ω-1 cm-1,与理论预测结果(约530 Ω-1cm-1)相近。通过磁性测量发现,Mn2.4Ga的奈尔温度在435K,M-H曲线随磁场呈线性变化,表现出典型的反铁磁特性。该材料仅在笼目晶格面内具有微弱的磁性(0.002-0.05 μB/f.u.@10-300 K),说明反?;舳вΣ⒉灰览涤诓牧洗判裕?)。角度依赖的反?;舳вΣ饬拷峁砻?,当磁场由笼目晶格面内向面外转动时,反常霍尔电导率仅发生符号变化而数值基本不变(见图4)。进一步说明,反?;舳вΣ灰览涤诓牧洗判远醋杂诜枪蚕叻刺沤峁挂鸬姆橇惚蠢省Mü肫渌湫痛判圆牧虾屯仄舜判圆牧隙员?,可以发现Mn2.4Ga的反?;舳绲悸视胱菹虻绲悸室约按呕慷?反?;舳绲嫉墓叵稻τ谕仄舜判圆牧锨颍?)。该工作首次制备出了偏分的Mn3Ga单晶,填补了笼目六角反铁磁材料Mn3X(Ga、Ge、Sn)中对Mn3Ga单晶的研究空白,发现了Mn3Ga中费米能级调控反常霍尔效应的机制,为反铁磁自旋电子学器件提供了新的候选材料和设计思路。相关研究内容以题名为“Large Anomalous Hall Effect at Room Temperature in a Fermi-Level-Tuned Kagome Antiferromagnet” 于2024年2月27日在线发表于《Advanced Functional Materials》杂志上,并已申请中国专利(公开号:CN 116892062 A)该项研究工作得到了国家重点研发计划,国家自然科学基金和北京市自然科学基金的支持。https://onlinelibrary.wiley.com/doi/10.1002/adfm.202316588
Hot News
/
相关推荐
2025
-
06
-
20
点击次数:
0
来源:X-MOL近年来,稀土掺杂的光子雪崩荧光凭借其独特的高阶非线性发光特性,吸引了全球研究者的关注。光子雪崩现象源自镧系离子掺杂体系中激发态粒子之间的能量正反馈循环,使得系统在极微弱的激发或环境扰动下,展现出指数级的发光强度突变。这一特性使其在低成本超分辨率成像、超灵敏光学传感、以及多物理场耦合探测等领域展现出巨大潜力。光子雪崩的高阶非线性响应是多重物理过程协同作用的结果,涉及激发态和基态吸收、...
2025
-
06
-
20
点击次数:
0
来源:Science Direct智能有机室温磷光(RTP)材料具有感知和响应外部刺激的能力,通过表现出不同的长寿命、发光颜色和附加特性来实现这一功能,这使它们成为先进防伪技术的有希望的候选材料。与其他刺激(例如机械力、电场和磁场、离子、温度)相比,水是一种理想的外部刺激,因为它容易获得、价格低廉且环保。然而,由于水分子会猝灭三线态激子,水致变色的RTP材料往往属于猝灭型。因此,基于葫芦[8]脲(...
2025
-
06
-
19
点击次数:
98
2025年6月18日下午,在上海师范大学化学与材料学院的会议室,海关总署、上海海关第二次来上海市稀土协会开展调研座谈,主要针对稀土全产业链追溯体系建设、标准应用与海关协同防控,以及近期企业在通关方面遇到的实际问题开展交流,海关总署风险防控局(上海)信息处、上海海关风险防控分局的多位领导、协会的六家稀土磁材企业以及上海市稀土学会等相关代表约20人出席本次会议?;嵋橛尚岣泵厥槌ご拗心咧鞒?,协会副会长...
2025
-
06
-
19
点击次数:
153
2025年6月18日下午,在上海师范大学化学与材料学院的会议室,海关总署、上海海关第二次来上海市稀土协会开展调研座谈,主要针对稀土全产业链追溯体系建设、标准应用与海关协同防控,以及近期企业在通关方面遇到的实际问题开展交流,海关总署风险防控局(上海)信息处、上海海关风险防控分局的多位领导、协会的六家稀土磁材企业以及上海市稀土学会等相关代表约20人出席本次会议?;嵋橛尚岣泵厥槌ご拗心咧鞒?,协会副会长...