夜来香论坛官网_全国新茶楼信息网论坛_24小时空降快餐联系方式_同城凤楼网站app

综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

稀土掺杂 TiFe 合金在广泛循环下的储氢和稳定性

日期: 2025-05-16
浏览次数: 59

来源:ScienceDirect

氢气是公认的清洁和可再生能源载体,在向可持续能源未来过渡中发挥着关键作用。尽管如此,有效的氢储存构成了重大挑战,从而阻碍了其在能源系统中的更广泛应用。基于化学方法的固态储氢提供了一种很有前途的解决方案。它提供高体积氢密度,在低压下运行,并确保更高的安全水平,有效缓解了这些储存挑战。在用于固态储氢的材料中,金属间化合物是一大类。通常用公式 AmBn表示,这些材料的储氢能力主要取决于氢和金属原子之间的相互作用。这种容量本质上受到氢化物化合物的晶体结构和晶胞体积的限制。

在各种储氢材料中,具有 CsCl 型结构的 TiFe 合金(空间群 Pm-3m)因其高氢容量而受到广泛关注。这些合金可以形成 β-FeTiH 和 γ-FeTiH2相,理论失重氢容量为 1.86 wt%,体积氢密度为 0.096 kg H2/L的一旦活化,这些合金能够在室温下吸附和解吸氢。除了用作固态储氢材料外,TiFe 合金还可以与 Mg 结合,通过水解制氢,提供另一种氢气供应方式。Kononiuk等报道,90 % Mg-10 % TiFe复合材料在2000 s内通过纯水水解可产生690 mL/g的氢气,与仅产生540 mL/g氢气的纯Mg相比,氢气提高了28%。此外,TiFe合金的主要元素铁(Fe)和钛(Ti)分别是地球上第四和第九丰富的元素,这使得这些材料不仅容易获得,而且具有成本效益。

然而,TiFe 合金的实际应用往往受到其严格的活化要求的限制。活化需要在高温和高氢气压力下长时间孵育,涉及多次加氢和脱氢循环,以实现在环境条件下的快速氢气吸附和解吸,并实现更高的储存容量。根据 J. J. Reilly 和 R. H. Wiswall的研究,TiFe 合金的活化过程包括几个关键步骤。最初,合金必须在 400 °C 至 450 °C 的温度下进行真空退火,然后暴露于约 0.7 MPa 的氢气中,保持该压力 30 分钟。然后将合金冷却至室温,随后承受约 6.5 MPa 的更高氢气压力。这种氢处理必须重复几次才能完全活化合金。

为了增强活化性能,稀土 (RE) 元素掺杂已成为改变 TiFe 合金微观结构和改善氢化性能的可行策略。稀土的添加,如钇 (Y)、镨 (Pr)、镧 (La)、钐 (Sm)和铈 (Ce)已被证明有效。例如,少量 Y 的取代不会改变 TiFe 合金的物相组成;在合金Ti1.08Y0.02Fe0.8Mn0.2,结构仍然是纯 TiFe 相。这种合金可以在 373 K 和 4 MPa 下活化,在 303 K 下实现 1.84 wt% 的储氢能力。在用 Pr 取代的合金中,例如 Ti1.1-xFe0.7Ni0.1Zr0.1Mn0.1Prx (x = 0–0.08),孵育期随着 Pr 含量的增加而逐渐缩短,从无 Pr 的 10000 s 缩短到 Pr 含量达到 0.08 时的 0 s。Li 等人的研究表明,Pr 的添加降低了 TiFe(111) 晶面的表面能,促进了氢原子从表面扩散到晶体中,从而提高了活化性能。此外,Pr 的添加显着细化了晶粒并引入了大量的晶界和缺陷,从而提高了活化速率和动力学。这些改进代表了基于 TiFe 的储氢系统实际利用的重大进步。

尽管活化性能取得了显著进步,但这些材料在重复氢吸收和解吸循环下的长期循环稳定性提出了关键挑战。氢气容量的退化和热力学特性在延长循环中的改变会严重损害储氢系统的效率和可靠性。这种降解不仅会影响材料的性能,还会阻碍其在实际能源系统中的实际应用,因此需要进行持续研究以提高耐用性和稳定性。在 Guo 等的研究中,TiFe 合金在低于 450 °C 的温度下用于热化学氢压缩 26 次循环。 在这些循环之后,TiFe 合金在室温下的储氢能力没有下降。然而,循环过程中的晶格应变导致氢吸收和解吸平台压力增加。当在 500 °C 下循环时,储氢容量从 1.1 wt% 下降到 0.7 wt%,减少了 30%。这种容量衰减主要归因于相变,出现了 TiH2、Fe2Ti 和 Ti2Fe 形成,TiFe 相含量降低到 74.43 wt%Endo 等人也观察到了类似的相分解现象,其中 TiFe 的氢化物相在 5 GPa 的氢压和 500 °C 下经历显着的晶格膨胀后发生分解,导致 TiH 的形成2和 TiFe2.此外,Shinzato等探讨了锰含量对TiFe合金循环稳定性的影响。在他们的研究中,TiFe0.7Mn0.3在 25 °C 和 500 °C 之间经历了 26 次氢压缩循环,容量损失很小,达到 0.04 H/M。

如上所述,TiFe 合金在氢吸收和解吸循环期间经常表现出容量下降。值得注意的是,对稀土掺杂、易活化 TiFe 储氢合金在长期使用下的循环寿命的分析有限。因此,本研究重点关注稀土掺杂 TiFe 合金的循环稳定性。目的是研究 TiFe 合金在长时间氢循环过程中结构和功能稳定性的影响。通过了解影响循环稳定性的机制,本研究旨在为 RE 掺杂 TiFe 合金的设计和加工制定指南,以提高其在储氢应用中的长期性能。




Hot News / 相关推荐
  • 2025 - 08 - 01
    点击次数: 29
    来源:X-MOL镧系元素有机-无机杂化荧光材料因其独特的光学特性和潜在的应用而被认为是下一代照明材料的有前途的候选者。在这项工作中,选择商业化的二氧化硅材料 (气相二氧化硅) 作为载体。通过硅烷偶联剂的桥接功能,Eu(TTA)3(Phen) 共价接枝到气相二氧化硅表面,合成镧系杂化荧光粉。随后,将荧光粉分散到 MMA 聚合系统中, 并通过原位聚合制备了单片荧光有机玻璃。所获得的铕杂化荧光粉和铕复合...
  • 2025 - 07 - 31
    点击次数: 49
    来源:X-MOL研究了稀土镍合金的热中子屏蔽性能,特别关注各种稀土元素及其浓度对中子传输系数的影响。镍基合金 GH3535 的厚度为 0.5 cm,掺杂了单晶或二元稀土元素。使用蒙特卡洛模拟方法评估热中子传输系数。分析的关键参数包括宏观吸收和散射截面、次级 γ 剂量和反冲电子的位移辐射损伤。结果表明,GH3535 中的热中子主要通过散射损失能量,从而实现了 7.24 × 10?1 的高传...
  • 2025 - 07 - 31
    点击次数: 48
    来源:X-MOL氧化铈 (CeO2) 的沉淀-煅烧合成工艺会产生大量的氨氮废水,对环境构成重大挑战。本研究介绍了一种环保且短过程的阳离子膜电解方法,该方法有助于一步将 CeCl3 溶液直接转化为 CeO2 纳米颗粒。研究的重点是工艺参数,包括 CeCl3 浓度、电流密度和电解温度。结果表明,在最佳条件下(Ce3+ 浓度为 100 g/L,电流密度为 100 A/m2,温度为 303 K),CeO2...
  • 2025 - 07 - 30
    点击次数: 63
    来源:X-MOL采矿是一种人为活动,它改变稀土元素(REE)的分布,改变矿区的生态环境,污染周边地区。然而,采矿活动对矿山土壤稀土元素分布和化学形态变化的影响仍知之甚少。本研究通过 BCR 序贯提取研究了矿山土壤和未开发土壤中稀土元素的分馏和化学形态形成。土壤样品多为阳性铈(Ce)异常,铕(Eu)异常为负。矿山土壤中轻稀土元素(LREEs)与重稀土元素(HREEs)的比值和总稀...
  • Copyright ?Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务